TURBULENT MIXING OF ACCOMPANYING AND
OPPOSING FLOWS
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The solution of the problem of the edge of a turbulent jet, obtained in [1] starting from a model
of the vortical motion of an ideal liquid, is generalized for the case of the turbulent mixing of
two plane semibounded (accompanying or opposing) flows of an incompressible liquid. It is
shown that the results of calculation are in qualitative agreement with experimental data and
that they are close to them quantitatively. Some of the special characteristics of the method
are discussed,

1. In {1] an analytical solution is given to the problem of the two-dimensional mixing of a plane homo-
geneous stream and a stationary liquid (the problem of the "edge of the jet" in the theory of turbulent jets
{2]). The starting point for construction of the theory in [1] was a model of the vortical motion of an ideal
(nonviscous) incompressible liquid,

The analogy between this type of motion and fully developed (established, on the average) turbulent
flow has been known for a long time ({3], page 271).

In [1] the authors do not leave out of consideration the question of the origin of vortices and treat it
on the basis of a model of the mixing layer forming with the decomposition of an unstable tangential dis-
continuity of the velocity into a large number of individual vortices. By averaging in time of the actual
values of the velocity of the unsteady-state potential flow of a liquid, in which isolated vortices are moving,
the authors impart to the model the principal properties of average turbulent motion, particularly "losses
of memory" with respect to the initial state, This method, i.e., a transition to an averaged flow, which is
independent of the initial random conditions, is an approximation on the road to a direct calculation of tur-
bulent motion by the solution and subsequent averaging of the unsteady-state Navier —Stokes equations, The
model adopted can reflect three characteristic negative criteria of the actual turbulent motion, i.e., its
unsteady-state character, its nonlinearity, and its irregularity, and can confer typical statistical proper-
ties on the averaged flow, i.e., steady-state conditions, continuity, and an ordered character.

Neglect of the effect of viscosity is admissible for fully developed turbulent motion far from solid
walls and for the region of scales in which viscous dissipation is insignificant.

The solution of the problem obtained in [1] and its calculated examples, i.e., the profiles of the lon-
gitudinal component of the velocity and its dispersion, bear witness to qualitative agreement with experi-
ment, The results of calculation are quantitatively close to the experimental values (on the order of mag-
nitude of the value of the pulsations of the velocity (u'®), of the value of the relative velocity (uy/u; ~ 0,7
at the prolongation of the line of separation, and of others). It is of interest to make a more complete ex-
amination of the proposed model and to make a comparison of the results of calculations of the solution and
experimental data, and, specifically, to supplement the calculation of the longitudinal component of the
velocity by calculation of the transverse (mean and pulsational) component of the velocity, and to determine
the value of the turbulent friction stress inherent in the model and the values of the correlations and their
distributions in the field of the flow.
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We shall carry this out using the example of the
problem of the free turbulent mixing of two homogeneous,
plane-parallel, accompanying or opposing flows of an in-
compressible liquid [2]. A partial case of this problem is
the problem of the edge of a jet [1]. A consideration of
accompanying flows permits making a comparison between
the model and experiment, from a detailed study in the ex-
periments of the effect of the parameter of accompaniment
m [the ratio of the velocities of the flows m = u,/u; (see
Fig. 1)] onthe characteristics of the mixing layer. Gen-
eralization of the problem for opposing flows is of interest
from the point of view of a comparison between calculation and approximate results obtained within the
framework of the theory of the boundary layer, i.e., for parabolic equations [2].

Fig. 1

2, Schematically (Fig. 1), the problem of the turbulent mixing of accompanying flows or opposing
flows reduces to the following, On both sides of a thin semiinfinite plate, two homogeneous plane-parallel
flows of an incompressible liquid move at different velocities., We neglect the friction of the liquid on the
plate, i.e., we shall not take account ofthe effect of the boundary layer near the wall near the surface., We
superpose the plate on the x axis in the region x < 0 and its edge on the origin of coordinates, Starting
from this point (x =0, y = 0), the separate flows (for definiteness, we shall speak of an accompanying flow)
come into contact. For the free flow of a nonviscous liquid, under the conditions of the problem there is no
characteristic dimension, Therefore, we must expect, and this is confirmed experimentally for problems
of free turbulence, self-similarity of the fully developed averaged flow., This means that the relative values
of the averaged valocity

(e . v/ _
_..._.—_-](?,m) '-_<u>_——AT ( u,(t)dl)

are universal and depend on the ratio of the coordinates y/x (but not on y and x individually),

For a mathematical statement of the problem, we formulate the boundary conditions. We shall as-
sume that the values of the velocity of the flows at the boundaries of the region are given by

u=1u with 2> —o00, y >0, —co{x< +~ 00, y > 4
U=1u, with r—> —o0, y<{0, —o0o <2< + 00, y—> —

We give a discontinuity of the velocity at the lines of the flow y = 0, simulating in the left-hand half-
plane the plate:

ulx, +0) —u(z, —0) =u, —uy, vz, +0) —v(z, —0=0

As a condition closing the calculating region we assume, following [1], that, at an arbitrary boundary
of the flow at a distance L from the edge of the plate, the flow is parallel to the x axis, i.e,,

U(I, ya t)=OWithI~-_—L, —oo<y<-'—oo

The artificial limitation of the length of the mixing region is connected with the inclusion of the scale
of length L, which is lacking in the physical statement, in the conditions of the problem, This leads to an
imposed solution for the character of the flow near this boundary with x — L, which is unreal for the physi-
cal problem. In actuality, at any arbitrary distance from the edge of the plate differing from zero, not only
the actual values of thc component v(x, y, t) = 0, but also the averaged value (v)(x, y) = 0, Therefore, the
best agreement with experiment is to be expected from a solution near the plate, i.e., with x « L. Self-
similar flow should correspond to a limiting solution with x/ L— 0, With /L — 1, there is inevitably an
appreciable difference between the calculated results and the real properties of the flow. Since (V)< (),
this effect of the boundary condition with x = L can distort only slightly the profile of the longitudinal com-
ponent of the averaged velocity in the region x « L. The effect can be considerable for the profile of the
transverse component (mean and pulsational) as well as for the correlation and the Reynolds stress (in {1]
the profiles of (u) and (u'?) are given only for the single cross section x/L = 0,5).

3. The postulation of the distribution of the vorticity
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0, = = 0v/dx — du/dy 3.1)

in the field of the flow is essential, Following [1], we shall assume a value w = 0 inthe whole mixing re-
gion, except for points at which individual vortices, generated with the decomposition of the interface, are
are located at any given moment of time, Introducing the flow function in accordance with the formulas

u = 0p/oy, v= —0¢;o
we connect in with the vorticity using the Poisson equation

Ay = —o (3.2)

The time-averaged circulation of the vector of the velocity inthe mixing region is made up of the cir-
culation created by the boundary discontinuity of the velocity with x < 0

0 ¥ 90

Tico = \ \ (42 — u;) dzdy

—x y=~0

and the total circulation of the system of N point vortices, located on the average (after the time At) in the
band 0 < x < L,

(—=At2

Iy = NTy = —

< o(r, y, t)ydtdady = (s — uy) L

Lo 1»
)

2 1.
v
=t:

20 - x

Going over from the circulation I to the vorticity «w, we reduce the problem to the integrated Poisson
equation

A g —u) S(y)3(— ) = ST Z Oy —yu (1 [z~ z,(0)] (3.3)
A=l
where 6(z) and 0 (z) are symbols of a 6- function and a unit power function {do (z)/dz = 6(z2)]; yp(t) and xp(t)
are the instantaneous coordinates of the n-th point vortex (n=1, 2,..,, N). We give the solution of Eq. (3.3)
without taking account of point vortices, i.e., for the steady-state problem

Ay, = (w0 —w) O () 5 (—0) (s = s (2,

(3.4)
with the boundary conditions
O © Oy — iy with y > 00, 0§ 0y = u, with y > —
O, e = 0 with v — — oo, g, 7 b = 0 with ¢ — L (3.9)
By the substitution
"‘:l}—_/'”—lli"ul-;bl(’ll‘/ (36)

we reduce the problem to a Neumann problem with null values of the derivatives along a normal to the bound-
ary at the boundaries of the calculating region

SF o (s —wa) 6 () [ (=) — 1]

(3.7)
The boundary conditions for Eq. (3.7) are
OfE, dy 0 with y - & oo" Oy*, fde = 0 with r — — oo, 1 == L (3.8)
The Green function for this problem has the form
Glroyo o y) = el l{le =) - (y —y Pl —=tan (e = & —LP = (y — i) (3.9)

The solution of the Poisson equation (3.7) is expressed in terms of the Green function (3.9) by
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I
YLy = —'—S S AbH*G(x, y, 2 Y dxdu=%1s (ur — u) G (2,0, 2, y') dx (3.10)
¢

we obtain

PR Nl — H ’ P ) ’ ’ . 3 /./ ! 2L
Y y) - =S @ s ) - (@ = 2 (e — 2L+ y?) — 4L+ 2 arotg o —arctg L= )L,'i} (3.11)

Taking account of point vortices, the solution of the complete equation (3.3) has the form

By =y I 4 e iy R Y)
¥ 3.12)
wy—-u2) L @.
o 2 (@ = 2, = (5" — ) = In (@ — 2L 5 2+ (3 = YD

R

We go over to dimensionless variables and parameters, using the quantities L and u; as the scales
of the length and the velocity:

(in what follows we shall omit the degree signs on the dimensionless quantities and the primes on the co-

ordinates x' and y').
For the dimensionless components of the velocity, from solution (3,12) we have

L Rl R f—m /r ¢
T T2 T T2 *'g“y*—'r-“ ‘1—*
(3.13)
. .t amx 32 I_mZI i n 1
wareige—y R RY 5 l(/_'/ (r—r) T e =2 B =y P
N 9

. ¢y 11— 22 -2 o t--m l‘ r-, , L R
R T l”(.x~-—2)‘-’+.1/2 23V El_(x—r,i)i—.-w A TN S U N (3.14)

These formulas determine the unsteady-state field of the velocities for the region under consideration

if the functions x(t) and yp(t) are known,

Let us write the equations for determining xp(t) and yy(t), i.e., the equations of motion of the individual

vortices. For an ideal liquid, from the equations of motion there follows the equation for the transfer (con-

servation) of vorticity

do{dt— 0w/ dt - udo /! dr = vdw i dy =0
Since, for point vortices

N N
W == 2 W, = 02 Ofx — z (1)) 81y — u (t))
s—1 ¥l

we then arrive at the following expression:

& — t dr 1) dr 4
zélx__x mM’ " Eﬁly_y t)]___u_(.u_Tj:=0
It can be seen that with x —xg(t) and y —~yg(t)
drg/ dt — u(xg, ye, ), dy,/dt = v(xy, ys 1) (3.15)

These equalities constitute evidence of the displacement of the vortices along with the flow of liquid.
The coordinates of the point vortices x4(t} and y(t) can be found from Egs. (3.15), the right-hand parts of
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“ } ] which are expressed by formulas (3.13) and (3.14) with the re-
. 'i placement of x and y by xg and yg. (In the summation, terms with
‘ n = s must be omitted, so as not to take account of the action of
v! a vortex on itself,)
|

25— : Before passing on to a description of a numerical calcula-
' v ‘U "V | '] tion using Egs. (3,13)-(3.15), we must make a few comments on
|
|
|

the field of the velocity generated by the steady-state vortical
field of the plate, i.e., by the boundary discontinuity of the veloc-
ity with x < 0. The steady-state part of the solution (§g) corre-

| sponds to a profile of the longitudinal component of the velocity

z which is symmetrical with respect to the y axis [with a value u =
Fig. 2 (uy + u:,)/2 at the axis]. The transverse component with y =0 dif-
fers from zero in the region x < 0, For the steady-state part of
the solution the plate is not a line of flow, Calculation shows that,
taking account of the unsteady-state part of the flow, i.e., of the
velocity field induced by the vortices, the averaged flow practical-
ly satisfies the boundary condition v =0 withy =0, x < 0, The
profile of the velocity (u) takes on the asymmetry characteristic
for the problem under consideration ({u) = 0,7u; with y = 0 and

m = 0),

4, Equations (3.13)-(3.15) were solved numerically in a
BESM-6 digital computer for values of the parameter m = uz/u1 =
Fig, 3 0, 0.1, 0,25, 0.5 as well as m =-0.2, In the calculation, 2 mean
value of the number of vortices was taken, N = 50, and for pur-
poses of comparison, N =25 and 100, With a change in N, there was a variation of the time required for
the establishment of steady-state conditions in an average field (approximately proportional to the number
N).

The interval of time between the introduction of individual vortices T with m > 0, taking account of the
time that a vortex is located in the system t, = 2/(1 + m), was assumed equal to t/N. With m < 0, the value
was determined by a control calculation in such a way that the mean number of vortices in the region of the
flow remained equal to a given value (for m = —0,2 the interval 7 =1,1 t/N). In the initial state N vortices
are disposed along the line

n—0.5

tLn N ’

yo=0.0Lsin [ z), n=1,2,... ,N)
\ {

The choice of the initial velocity field had no effect on the averaged flow since, after a time equal to
50-100 7, the pulsations of the velocity take on a random character. This can be seen from the example of
a calculated oscillogram of the longitudinal component of the velocity at the point x = 0,5, y = 0,005 (Tig. 2,
m = 0), After this time, the pulsation characteristics of the flow

S, = <u'2>‘.'z,
g, == <12y,
'y,

Kilv = <u,vr> lous,

are found to be only approximately fully developed and can be used mostly for qualitative evaluations and
for comparison with experiment,

5. Let us consider the question of the self-similar character of the flow for m = 0. Figure 3 gives
four profiles of the longitudinal component of (u) in the caleulating cross sections x = 0.2, 0.3, 0.4, and
0.5 {curves 1, 2, 3, 4) as a function of the ratio y/x. As can be seen from the figure, for different distances
from the edge of the plate, the profiles of (u) differ appreciably among themselves, The difference in-
creases with an increase in x and is a result of the artificial limiting condition with x =1 (see above). The
results obtained permit extrapolating the profile for the limiting value x — 0. The self-similar profile of
the velocity, shown by the heavy line in Fig, 3, will be used for comparison with the results of a calcula-
tion made using a semiempirical scheme which are in good agreement with experiment. The profile of the
mean velocity selected using extrapolation is closetothe calculated value with x = 0,2. In this cross sec-
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tion, nearness to the "source of the vortices™ has an effect on calcula-
,"” ‘ I o tion of the pulsations. Therefore, in the succeeding figures for m =0
0 “ ! and with analysis of data for m = 0, the calculated results are given
’ for the cross section x = 0.3 (with the exception of Fig. 4, in which the
a6 — results of the calculation are compared with the data of [1]).
04—t I / l#_‘* Figure 4 gives calculated profiles of the averaged and pulsation
/}\‘ oy ; characteristics for m = 0 and x = 0,5, The dotted line shows the re-
az N “‘{@——ﬂ sults of a calculation of (u) and o, carried out in [1], which are in agree-
s — D, ——— ment with those obtained in the present work, The remaining profiles
\ ! (of the transverse component of (v) as well as of (u'v"), oy, and Kyy)
. 2¢o | v u
- 2t=] 17227 7 S| have a form typical for the problem of the edge of a jet and, in order of
i ' '”l L magnitude, coincide with the experimental data of [2, 4-6]. During the
Fig, 7 course of the solution of the unsteady-state problem, there develops a

stable correlation between the actual values of u' and v'; the maximal
value of Ky =~ —0.5, Supplementing the results of [1] for the edge of a jet, there is confirmed the possi-
bility of an analytical determination of a quantity characteristic of turbulent flows, analogous to the Reynolds
stress (— Tp/p = (u'v") as well as of the distribution of the transverse component of (v) (a value on the
order of magnitude of 10'2u1). In order of magnitude, the values of the pulsations of Ty and o, attain 20-
30% of u,, which is in agreement with experiment.

Analogous profiles for x = 0.3 are shown in Fig. 5. In their character they are similar to the curves
for x = 0,5 but, as a result of the great distance from the cross section x =1, they are closer to self-simi-
lar,

Figure 6 shows profiles of the mean (a) and pulsational (b) characteristics for x = 0,3, with values of
the parameter of accompaniment m = 0, 0.1, 0,5 (curves 1, 2, 3, respectively). It can be seen from the
figure that the superposition of an accompanying flow leads to a constriction of the mixing region and to a
lowering of the intensity of the pulsations. These properties are characteristic for real flows (2, 4-6], i.e.,
the results of calculation are in agreement with experiment.

Figure 7 gives analogous profiles of the mean and pulsational characteristics for an opposing flow
(m =—0,2, x = 0,3). The solution makes it possible to obtain a qualitatively plausible picture of the motion,
which is in agreement with calculations using a semiempirical scheme [2, 4, 5]. A quantitative compari-
son with experiment is difficult for this problem, due to the lack of detailed experimental data, There is a
change in the sign of (u'v") in Fig. 7 in the region of the transition to opposing flow ((u) (0)). The valuesof
the pulsations are greater with m = —0.2 than with m = 0,2, i.e., with different absolute values of m, oppos-
ing flow corresponds to more intense turbulence.

To make a comparison between the calculated results and experiment, instead of experimental data
differing among themselves, it is expedient to have recourse to the calculating formulas of semiempirical
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theories., Figure 8, curve 1, gives a calculated profile of the velocity (the self-similar curve in Fig. 3,
m = 0), curve 2 a profile of the velocity using a method equivalent to the problem of the theory of thermal
conductivity [7], and curve 3 the so-called Schlichting profile {4]. (For curve 2

=L T v \ Y
W = et (LR

it is assumed that a = 0,091, starting from the agreement between the values of y/x with (u) = 0.1, For
curve 3 (uy = [1 — (y, /b3/2]2, for agreement it is assumed that (u) = 0,7 with y/x = 0 and y4/b = 0.29 and
that (u) = 0.1 with y/x =—0,15 and yg/b = 0,77; this corresponds to ¢ ~ 0,33 and to the equality b = cx.)
As can be seen from Fig. 8, the calculated and semiempirical curves are close; the divergences lie within
the limits of the usual scatter of the points,

Figure 9 in the coordinates

~ {u) —uz " Y
PR L S
Ul — ug Yiy

where y,/, is the coordinate of the point where i = 1/2, gives a plot of the approximately universal profile
(1) 4 =f(¥) for all values of m (—0.2 = m = 0.5 and curves 2 and 3 analogously to Fig. 8. As curve 1 the
mean profile from the distributions of the velocity for different values of m is taken. Curves 2 and 3 were
recalculated from the expressions given in [7] and from the Schlichting profile,

In spite of the complexity of the comparison (superposition of the curves at the points u = 0,1 and 0.7),
it constitutes evidence of the fact that a solution free of the inclusion of empirical constants is in agree-
ment with the results of a calculation using semiempirical schemes which have been confirmed experi-
mentally, The solution corresponds to experiment not only qualitatively but, with a certain degree of ap-
proximation,alsoquantitatively. This conclusion can be extended also to opposing flows, It is of interest
to clarify the effect of the parameter m on the geometry of the flow, i.e., on the dimensions and location
(with respect to the line y = 0) of the mixing region.

Figure 10 illustrates the dependence on m of the geometric characteristics of the flow, i,e,, of the
relative coordinates y/x corresponding to the values it = 0,1, 0.5, 0,9 (curves 1, 2, 3) and of the nominal
thickness of the mixing zone A(y/x) = (y/x)o.g - (y/x)m (curve 4),

The figure shows that, in an accompanying flow (m > 0), the internal boundary of the flow (3) varies
only slightly, while the external boundary (1) appreciably approaches the line y = 0 with a rise in the value
of m, In the region m < 0, for opposing flows this boundary, with a risc in the absolute valuec of m, moves
away from the straight line y = 0. The thickness of the mixing region A(y/x) falls continuously with a rise
in the value of m. The graph in Fig. 10 shows that the empirical constants introduced into the calculating
schemes of [2, 4, 5] depend on m.

6. What has been said confirms the applicability of the method of calculation proposed in [1] to the
type of free turbulent flow under consideration, The ficld of the averaged characteristics of the flow ob-
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tained by analytical solution (the components of the velocity and the secondary moments) corresponds to
fully developed turbulent motion, The agreement between the solution and experiment was obtained from
a two-dimensional model of the vortical flow of an ideal liquid, while the real actual motion is three-di-
mensional. Qualitatively, this can be explained by the fact that in jet turbulent flows, as is shown by ex-
periment [2, 6], in practice, the secondary moments (u'w" =~ (v'w' = 0, containing the pulsations of the
component of the velocity w along the z axis, are equal to zero, The effect of this component on the aver-
aged motion may be negligibly small.

A further broadening of the method of {1] may be found useful in the solution of certain problems,
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